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5 Impacts on forest 
structure and plant 
species diversity

P. Schmidt, W.B.J. Jonkers, P. Ketner & B.P.E. De Dijn

5.1 Introduction
Forest management systems such as the CMS need to be firmly based on ecological 
principles. In tropical rainforest ecosystems, sustainable use is intimately linked 
to ecology, as each management system interferes with the forest structures and 
processes. The question is whether or not these interferences have such a strong impact 
that key features of the forest, such as its structure and its species composition (and 
biodiversity), will change in such a way that the sustenance of the forest and forest use 
become problematic. When the first concepts of the CSS were formulated and tested 
around 1980 research was undertaken to address this question to a certain extent. These 
initial studies ran more or less parallel in time with the experimental application of CSS 
treatments, or shortly after. Longer-term effects were studied about two decades later, 
when old and new data were analysed to arrive at a more comprehensive understanding 
of the impact of the CMS. 

Six forest stands, representing different intensities of human interferences related to 
the CMS, were studied. These interferences ranged from selective logging, to refining, 
to cutting nearly all trees. Table 5.1 shows that the treatments in the six forests stands 
varied from ‘undisturbed’ (Phytomass Forest), via selective cutting (Procter’s Forest), 
selective cutting and refinement (MAIN, Mapanebrug and Akintosoela) to intensive 
clear cutting (Weyerhäuser). In Mapanebrug a first and a second refinement were 
carried out. In the Kabo region the Phytomass Forest and the untreated plots of the 
MAIN experiment served as reference plots; for Mapane this is Procter’s Forest. Not all 
features were studied in all forest stands, as some stands were too small or too unique 
for destructive experiments. 
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Table 5.1. An overview of the forest stands discussed in this chapter.
Stand name Phytomass 

Forest
MAIN* Van Leeuwen 

transect
Procter’s 
Forest

Mapanebrug Akintosoela1 Weyerhäuser

Region Kabo Kabo Kabo Mapane Mapane Mapane Mapane

Treatment Undisturbed Selective 
cutting, 
refined

Undisturbed Selective 
cutting

Selective 
cutting, 
refined

Selective 
cutting, 
refined

Nearly total 
clear cut

Year harvest n.a. 1978 n.a. 1966, 1974 1966 1966, 1974 1969

Harvest 
intensity

n.a. Four levels, 
0, 1, 2, 4 
m2.ha-1

n.a. Light Light Light All trees > 
27 cm dbh 
removed, ± 
200 m3.ha-1

Year refined n.a. 1982/3 n.a. n.a. 1967 1975 n.a.

Refinement 
intensity

n.a. Three levels: 
no, > 30cm, 
> 20 cm dbh

n.a. n.a. 20+D8 ** 20+ ** n.a.

Remarks Reference 
plot

Test plot CSS Reference 
plot

Reference 
plot

Test plot CSS Test plot CSS Secondary 
forest

Abbreviation Phy Fo MAIN Van Leeuwen 
transect

Pro Fo Ma Br Akin Weye

* Of the total of 30 plots, 9 were used in the experiments discussed here. See Section 5.4 for more details.
** Deviating from the normal prescriptions, large commercial trees have been poisoned too. See Section 5.4.

5.2 Forest structure
5.2.1 Introduction
Main variables of the spatial structure of a tropical rain forest include patchiness and 
gaps, dead wood laying on the forest floor, basal area, stratification, crown density, 
stem and crown dimensions. Roots make up the belowground structure. The physical 
structure of the forest is of importance for its plants, most obviously so for epiphytes, 
climbers and lianas, which all require the support provided by the stems and branches of 
self-supporting woody plants. For herbs, shrubs and immature trees in the understorey, 
the structure of the forest canopy above them determines the light regime to which they 
are exposed, and thus their development (see Hartshorn 1990 for the Neotropics). 

5.2.2 Diameter class distribution, basal area and standing volume
An important general feature of the tropical rain forest is that it has a well balanced tree 
diameter class distribution, with numbers of trees per diameter class diminishing almost 
geometrically with increasing tree size (Rollet 1978). This results from the dynamic pattern 
of growth to maturity of the trees, during which seedlings and small trees struggle to 
grow and survive, and, while individuals die, only some trees reach adult stages, produce 
flowers and seeds. Ultimately relatively few large trees are available for harvesting. A 
second feature is that individual tree species, both commercial and non-commercial 
ones, may deviate substantially from this general pattern. Schulz (1960) described this 
for the Mapane forest and Jonkers (1987) for the MAIN experiment.
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It can be expected that both logging and refinement will change the diameter class 
distribution, the basal area and the standing volume of the forest. Figure 5.1 shows that 
both Phytomass Forest and Procter’s Forest have a fairly normal, reversed-J shaped stem 
diameter distribution. In Akintosoela1 all large trees had been killed (even more than 
prescribed in the normal CSS procedure, see Section 4.4) and seven years after treatment 
no new large trees had replaced them yet, resulting in only a few trees > 40 cm dbh. 
In Weyerhäuser trees in the smaller dbh classes dominate. Here severe logging had 
completely removed the larger diameter classes and subsequent rejuvenation resulted 
in many young individuals. Weyerhäuser had no trees with dbh > 40 cm due to the short 
recovery time (about 13 years) after heavy exploitation. 

The basal areas in both control forests (Phytomass Forest and Procter’s Forest) did not 
differ much from each other (Figure 5.2). These values were higher than those given by 
Schulz (1960). His value of 17.2 m2.ha-1 for the Mapane forest was based on trees > 24.5 
cm dbh. As expected, logging and refinement had reduced the basal area. The heavier 
the intervention, the more the basal area was reduced. From our inventories it is clear 
that it will take many years to reach the pre-intervention value again. In Akintosoela1 
the basal area before refinement was 28.3 m2.ha-1. In refinements with a 20 cm diameter 
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Figure 5.1. Diameter distribution (cm) in trees (standardized per ha) in four differently treated (see Table 5.1) forest 
stands. Surface of inventory Phytomass Forest 5 ha; Procter’s Forest 5 ha, Akintosoela1 1 ha; Weyerhäuser 0.25 ha.

Figure 5.2. Left: Basal area of all tree species in four differently treated (see Table 5.1) forest stands as assessed in a 
forest inventory (green, 5 ha in Phytomass Forest and Procter’s Forest and 1 ha in Akintosoela1 and Weyerhäuser) and 
in phytomass plots (yellow and blue, 0.12 ha in Phytomass Forest, 0.14 ha in Procter’s Forest, 0.12 ha in Akintosoela1 
and 0.025 ha in Weyerhäuser). Right: Basal area in MAIN five years after logging and one year after refinement, 
assessed on 9 ha.
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limit basal area was reduced to about 9.8 m2.ha-1 (De Graaf 1986). Seven years later the 
basal area reached 19.2 m2.ha-1. The secondary forest of Weyerhäuser had grown, in 13 
years, to a basal area of 27 m2.ha-1. This high value is the result of the large number of 
fast growing trees of pioneer species in the secondary vegetation (see below). It is not 
known how much the initial basal area of this forest stand was immediately after the 
cutting of all trees > 23 cm dbh in 1969. 

No assessment of the standing volume of all trees in treated forest stands was carried 
out. However, assuming an average specific gravity1 of 0.72 g.cm-3, an estimate can be 
made based on the phytomass of tree stems. It is difficult, however, to compare these 
data with bole volumes, because in this phytomass study the continuing part of the 
stem above the first major branch was considered as stem, whereas usually this part is 
not considered as being part of the bole. Standing volumes in Phytomass Forest and in 
Procter’s Forest were similar (see Figure 5.3) and somewhat lower than the 426 m3.ha-1 
(dbh > 24.5 cm) mentioned by Schulz (1960). Striking, however, is the very low standing 
volume of trees > 5 cm dbh in Akintosoela1 and Weyerhäuser. Even when including trees 
between 1 and 5 cm volume value remained low. This is evidence that the harvest and 
refinement in Akintosoela1 had reduced the growing stock of large trees enormously. 
The large number of young trees indicated a good restoration potential, mainly with non-
commercial trees, but also a sufficient amount of commercial trees (Jonkers pers. obs.). 

5.2.3 Foliage distribution and light
The vertical distribution of the leaf mass influences the light conditions and affects 
the conditions for photosynthesis, and thus growth and regeneration to maturity. 
Nevertheless, data on the distribution of leaf mass in tropical rain forest are scarce. Odum 
et al. (1963, Puerto Rico) thought the existence of strata in rain forest was doubtful, 
whereas Rollet (1974, Venezuela) showed that leaf mass has a roughly bell shaped 
distribution with a maximum density at around half the maximum tree height. Logging 
and refinement as carried out in the CMS experiments in Mapane undoubtedly changed 

1 Calculated from Vink (1977). Probably an overestimation due to the fact that no secondary species are 
included.
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the distribution. Logging had probably only limited impact on the overall structure of 
the forest stands, as the exploitation carried out was light. A few gaps and skid trails 
(see below) were created. Refinement, however, changed the structure considerably. 
Trees died and if they collapsed, additional gaps were created and the height of the 
canopy became probably lower, more open and more uniform (compare in Figure 
5.4 the canopy in the lightly exploited Procter’s Forest with the lightly exploited and 
refined  Akintosoela1). In the gaps, dense secondary vegetation developed with fast 
growing pioneer species (Inga, Pourouma, Cecropia spp.). In Kabo, however, where large 
commercial trees were retained during refinement, such lowering of the canopy did not 
occur (Jonkers, pers. obs.) and proliferation of pioneer species was less pronounced (see 
Section 4.5). In general, the vegetation density in the lower strata increased. 

Depending on the treatment, the total height of the leaf mass and its vertical 
distribution differed. Treatments, such as selective cutting, refinement and nearly clear 
cutting, reduced the leaf mass (Phytomass Forest 8.5 t.ha-1; Procter’s Forest 7.9 t.ha-1; 
Akintosoela1 7.2 t.ha-1 and Weyerhäuser 3.7 t.ha-1, see Chapter 6), and thus reduced the 
photosynthetic capacity of the forest. This reduction was probably stronger than the 
increase in photosynthesis resulting from the higher light availability deeper into the 
forest structure as a result of those treatments. 
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Figure 5.4. Profile diagrams in Procter’s Forest (P20) and Akintosoela1 (A400). Profiles were drawn in 1983 along an 
East-West running straight central line. In the profiles only those smaller trees (> 2 m height) were drawn that grew 
close to the central line. (Source Voordouw 1985). On this central line birds were sampled in 1982 (see Chapter 7) and 
light distribution was measured in 1983 (see section 5.2.3).
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Light conditions in treated forest stands differed from those in non-treated stands. 
Cumulative photochemical (uranyl-oxalate) assessment of UV light over longer periods 
on different heights on three plots in two differently treated stands confirmed this: seven 
years after refinement the light climate in the exploited and refined stand Akintosoela1 
resembled that in an artificial plantation, while the non-refined Procter’s Forest retained 
a light climate similar to an undisturbed natural forest (Voordouw, 1985). Fig. 5.4 gives an 
impression of these two forest stands.
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Figure 5.5. Distribution of tree and palm leaves (kg.m3, X-axis) along tree height (m, Y-axis) in Phytomass Forest (not 
treated, above left), Procter’s Forest (lightly exploited, above right), Akintosoela1 (exploited and refined, below, left) and 
Weyerhäuser (clear cut, below, right). For more details of the treatments see Table 5.1.
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The effects of treatments on leaf mass distribution 
were studied in the Phytomass Forest (12 plots), 
Procter’s Forest (14 plots), Akintosoela1 (12 plots), 
and Weyerhäuser (2.5 plots). These plots were 100 
m2 each. The following features were measured: of 
all felled trees (> 1 cm dbh) and palms (> 1.5 m 
high) the total height, the stem length (until the 
lower end of the crown), the greatest diameter 
of the crown and the dry weight of the leaf mass 
were measured on the lying tree. Subtraction of 
stem length from total height gives crown depth, 
and multiplying that value by crown diameter 
gives the volume of each crown calculated as a 
cylinder. The distribution of the leaf mass over 
each crown was calculated on the assumptions 
that the leaf distribution over the crown was 
diffuse over the whole crown volume for trees less 
than 18 m high, and diffuse over the upper half of 
the crown for trees of more than 18 m in height. 
These assumptions were based on observations 
on the profile diagrams of these forests. Of course, 
these assumptions are rough approximations and 
do not take into account differences based on 
species, position and age. Based on the figures for 
each crown, the leaf distribution in an air volume 
of 10x10x1=100 m3 was calculated for every meter 
of crown height (see also Chapter 6 and Schmidt 
1981, 1982).

When the crowns of the poisoned and dying trees collapsed, average height of the strata 
decreased, and the distribution of the leaf mass along the tree’s height changed. Keeping 
in mind that in the untreated Phytomass Forest an over-sampling of tree phytomass had 
occurred, and in the lightly exploited Procter’s Forest an under-sampling (see Chapter 6), 
and that the ecological conditions in these two stands are not the same, we nevertheless 
observe that (see Figure 5.5):

•	 A bell-shaped distribution as described by Rollet (1974) was found in Phytomass Forest 
and Procter’s Forest, but the latter shows some irregularities along the height profile, 
having more strata. Noteworthy is the dense layer of palm leaves in the understorey.

•	 In both Phytomass Forest and Procter’s Forest, emergent trees built an open 
canopy above 36 m. The density here will be very variable: from open space 
without any leaves to dense crowns of the emergent trees. This layer was denser in 
Phytomass Forest than in Procter’s Forest, which could be the result of differences 
in growth conditions between the forests, of selective cutting in Procter’s Forest, 
or of the sampling methods.

•	 In Phytomass Forest, the next layer, between 20 and 36 m, formed the densest 
layer in the canopy. In Procter’s Forest this height interval was less dense and 
split into three layers: two more or less dense layers around 32-36 m and 20-28 

Photo 5.1. Secondary forest, Mapane 1983. 
(Photo P. Schmidt)
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m separated by a layer with few leaves. Perhaps there was an earlier exploitation 
of some trees whose crowns filled these layers. Below 20 m, there was not much 
leaf mass, though slightly more in Procter’s Forest than in Phytomass Forest. Two 
factors could play a role here: the abundance of palm leaves in Phytomass Forest, 
intercepting light, and the stimulus given to regeneration and leaf production of 
trees in the understorey of Procter’s Forest due to selective cutting.

•	 Fifteen years after selective cutting in Procter’s Forest the forest floor was shaded.
 
Comparing the three forests in Mapane, with similar ecological conditions but quite 
different treatments (Procter’s Forest: selective cutting, about 15 years before assessment; 
Akintosoela1 selective cutting and refinement about 15 and 7 years before assessment; 
Weyerhäuser: regrowth after nearly complete clear cut 13 years before assessment), we 
observe that (see Figure 5.5 and Schmidt 1981; 1982):

•	 Both Procter’s Forest and Akintosoela1 had an upper layer of emergent trees. 
This layer did not form a closed canopy. In the former stand this layer stretched 
between 35 and 47 m. In Akintosoela1 the upper layer was lower, between 29 
and 37 m, a consequence of the refinement, and probably consisting mainly of 
valuable trees. In Weyerhäuser, no such layer was found: the highest trees were 
predominantly secondary trees (such as Cecropia and Pourouma) and similar in height.

•	 In all three stands other leaf mass layers could be distinguished.
•	 In Akintosoela1 two dense layers occurred, at 20 to 25 m and at 14 to 18 m. 

The higher one corresponded with the closed canopy layer in Procter’s Forest, 
the lower one with the top of the understorey in Procter’s Forest. Below 12 m 
more leaves were present than in Procter’s Forest, possible caused by extensive 
regrowth as more light was available after the refinement. 

•	 In Weyerhäuser leaf mass was concentrated in three layers, one between 19 and 
24 m, one between 8 and 12 m and one between 2 and 4 m.

5.2.4 Long-term changes in forest structure
In 2000-2001 forest structure was measured in the MAIN experiment, about two decades 
after logging and refinement (De Dijn 2001b, c). Measurements took place in one-hectare 
core plots:

•	 three logged and silviculturally treated plots with treatment code E23–SR18 (the 
plots that were individually numbered 15, 27 and 36 when the MAIN experiment 
was set up); 

•	 three logged plots with treatment code E23-S0 (plots numbers 14, 26 and 38); 
•	 two undisturbed control plots, one (number 41) in the MAIN experiment and one 

chosen in 2000 in an adjacent experiment, the Van Leeuwen transect (number 51).

The forest structure was assessed horizontally – parallel to the soil surface – in the low 
understorey, and vertically – straight up from soil surface into forest canopy – at nine 
point locations in each 1-ha plot (De Dijn 2001a, b). The horizontal measurements 
involved the inventory of vegetation structures along and beneath a rope tied at 1 m 
above the soil surface. Structures inventoried were the live stems and crowns or twigs of 
tree seedlings, palms, and climbers/lianas touching the rope or between the rope and the 
forest floor, as well as individual terrestrial and epiphytic herbs, ferns, moss clusters and 
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macro-fungi; small pieces of fallen (dead) wood were also noted. Vertical measurements 
involved counting the number of 1 m sections of a flagged rope (shot up by a catapult 
and hanging down from the canopy) that touched these same types of structures. The 
horizontal counts were regarded as measures of the abundance or density of structures 
in the lower understorey, the vertical counts as measures of the extent or density of 
structures along the vertical axis of the forest. Large fallen (dead) stems, branches and 
stumps (diameter > 10 cm) were counted in three 20 × 50 m subplots per ha. 

In these horizontal and vertical inventories a total of 17 structure variables were 
recorded. To evaluate how much these structure variables contributed to the overall 
forest structure the data were analysed by a Non-Metric Multidimensional Scaling (NMS) 
procedure (De Dijn 2001a, b). 

The results of this NMS analysis suggested that most of the variation in the Kabo forest 
structure data set was associated with the abundance of large palm crowns (mostly 
of boegroemaka, Astrocaryum sciophilum, one of the locally dominant palms at Kabo; 
see Raghoenandan 2001). This agrees with findings of Schulz (1960) who reported that 
A. sciophilum can form a closed layer below the tree canopy that impedes plant growth 
in the lower understorey (see also Section 5.3.3 and Figure 5.5). 

In addition, the results of the NMS analysis suggested that forest disturbance is 
associated with much of the remaining variability in the Kabo data set, but not in a 
simple manner (De Dijn 2001a, b). Disturbances due to logging and refinements seemed 
to manifest itself at many point locations in the plots in the form of low forest with less 
extensive crowns and much old debris (dead wood, probably mainly originating from 
the high post-treatment mortality, see also Sections 4.4.3 and 4.5). Similar features were 
reported from recovering, secondary forest (De Graaf 1986; Jonkers 1987). Disturbance, 
however, also appeared to manifest itself as forest with an open lower understorey and 
extensive tree crowns overhead. This may be forest that has developed in gaps resulting 
from severe disturbance. The development of such forest in CMS-treated plots has been 
discussed by De Graaf (1986). Altogether the NMS analysis suggested that logged and 
logged and refined forest plots developed a more heterogeneous pattern in the forest 
structure, ranging from apparently undisturbed to severely disturbed patches. It is 
important to emphasize that even in the disturbed forest plots at Kabo there were many 
point locations where the forest was structurally similar to that of undisturbed plots. 

The same data were further analyzed by ANOVA, using the vertical extent of palm crowns 
as a covariate (an inventory-based variable), in an attempt to assess the impact of large 
palms on the forest structure (De Dijn 2001a, b). The primary purpose of these analyses 
was to assess the significance of differences in forest structure between disturbed and 
undisturbed plots. No across-the-board significant differences between disturbed and 
undisturbed plots were detected, as was to be expected given the fact that the NMS 
analysis had already indicated a distinct overlap in structural features between the 
disturbed and undisturbed plots. However, significant differences were found between 
logged plots and logged and refined plots. The logged plots had significantly more liana 
stems and epiphytic mosses in the lower understorey, but less old, heavily decomposed 
tree stumps than the logged and refined plots. The abundance of old tree stumps in the 
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logged and refined plots is undoubtedly a legacy of the extensive poison-girdling of 
trees. Lower numbers of lianas in the refined forest may represent a persistent effect of 
liana cutting as part of the CMS treatment. 

5.2.5 Roots
Since roots are situated belowground, it is difficult to investigate their spatial distribution 
in large patches of the tropical rainforest. In Proctor’s Forest we washed away the soil in a 
patch of 10×10 m, till a depth of about 90 cm, using a fire hose. This revealed that:

•	 No individual root space exists in the soil and the roots of different trees 
intermingle (see photos 5.2, 5.3, 5.4, 5.5, 5.10). This can be seen for fine roots as 
well as for coarse roots (> 10 mm). Even inside the very crowded, shaving-brush-
like root system of a Oenocarpus bacaba palm, fine and coarse roots of other trees 
could be found. Strangling other roots was a fairly common phenomenon (photo 
5.10). Some parts of the washed-out plot seemed overcrowded by roots, while 
others were almost devoid of roots.

•	 At various places roots grew upwards (see photo 5.6). For instance, one root of 
about 2 cm thick had grown upwards for about 20 cm and had developed there 
various smaller horizontal branches. These were probably feeder roots growing 
along the gradient of increasing nutrients near the litter layer.

•	 Roots could extend over substantial distances: a couple of roots (about 8 cm in 
diameter) grew into the 10×10 m plot and left the plot on the other side (photo 
5.4). One of those could be traced back to a tree 10 m south of the plot. At the 
north side of the plot it continued for at least 8 m without any visible reduction 
in diameter.

•	 It is tempting to say that fine roots stayed near the surface, whereas larger roots 
grew deeper. Often this seems to be the case. But the buttresses of the large 
Sclerolobium micropetalum dissolved just below the soil surface in thick (5 cm) 
roots spreading horizontally and many small roots growing downwards (photo 
5.9).

•	 The variation in root system architecture was large. Nevertheless, most trees 
had developed a pen root. Root systems of palms varied too, with extremes like 
the shaving-brush-like system of Oenocarpus bacaba (photo 5.7)  and the more 
haphazard system of the stemless Astrocaryum paramaca (photo 5.8).

In the context of our study the main question is, of course, how roots and root growth 
may be affected by treatments used in the CMS. Killing trees, as done during logging and 
refinement, will cause a die back of roots, reducing the uptake capacity but also reducing 
the competition for nutrients and water. But, as a result of the enhanced growth of the 
remaining trees and the regeneration of new trees, the uptake capacity will be restored. 
Nevertheless, leaching of nutrients from decomposing plant material may occur due to 
a treatment (see Chapter 6). Killing trees did not, or not noticeably, affect the anchoring 
capacity of the remaining trees.

Root growth can seriously be impeded by logging operations. Transportation of logs 
from the forest to the road landing is commonly carried out by means of heavy tractors 
or wheeled skidding machines, which can severely damage the soil structure. When logs 
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are skidded on the forest floor, the soil is moved aside by the logs and by the wheels of 
the skidder – this is called rut or track formation –  and at the same time the subsoil is 
compacted by the weight of the skidder and its load. Compacted soils have a reduced 
water infiltration capacity and an increased resistance for root penetration. Both are 
adverse conditions for plant growth. These effects, although not irreversible, need a long 
time to recover.

Photo 5.7. Root system of Oenocarpus bacaba Mart. 
(Photo P. Schmidt)

Photo 5.6. Root of Sclerolobium micropetalum (Ducke) 
grows upwards (Photo  P. Schmidt)

Photo 5.2. Overview root systems in Procter’s Forest, 
area 1×1 m, 0.1 m depth. (Photo P. Schmidt)

Photo 5.3. Overview root systems in Procter’s Forest, 
area 2×3 m 0.1-0.2 m depth (Photo P. Schmidt)

Photo 5.4. Overview root systems in Procter’s Forest, 
area 5×5 m, 0.4 -0.6 m depth (Photo K.E. Neering)

Photo 5.5. Root of Eschweilera poiteaui (Berg) Ndz. 
penetrates through the root system of Sclerolobium 
micropetalum (Ducke) (Photo P. Schmidt)



5. Impacts on forest structure and plant species diversity

85

Long-term changes in the soil structure 
were studied in Procter’s Forest by 
Zwetsloot (1982). Compaction was analysed 
by determining the bulk density in wheel 
ruts and between the (two) ruts of skid 
trails, as well as in undisturbed forest soils. 
Less than 2 % of the area was occupied by 
skid trails. In the trails the bulk density had 
increased significantly, even in trails with a 
low travelling intensity. Re-invasion by tree 
seedlings and young trees in and between 
the tracks occurred, but their growth was 
visibly hampered, due to the impacted 
subsoil. Only a few pioneer species, such 
as Inga spp. (tree), Selaginella pedata and 
Adiantum latifolium (herbs), regenerated 
well on disturbed soil near the ruts.

Hendrison (1990) carried out soil-impact 
studies in the Mapane research forest, 
measuring bulk density in soil samples 
and using a penetrometer. A significant 
relationship was found between the degree of soil compaction and the travelling 
intensity of the tractor or wheeled skidder. Primary skid trails, which enclosed a logging 
compartment, were maximally compacted, because they were frequently used by the 
skidding machines, while branch trails showed far less compaction because of a lower 
travelling intensity.

Keeping in mind those soil disturbances and the long period needed to recover from 
that, as described above, from the beginning the CELOS Harvesting System aimed at 
minimizing the number and length of the skid trails along which logs are to be extracted 
from the forest. 

Photo 5.8. Root system of Astrocaryum paramaca 
Mart. (Photo P. Schmidt)

Photo 5.9. Root system of Sclerolobium micropetalum 
(Ducke) (Photo P. Schmidt)

Photo 5.10. Roots strangling the pen root of 
Eschweilera corrugata (Poit.) Miers (Photo P. Schmidt)
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Table 5.2. Bulk density (0-20 cm), non-capillary pore volume, root dry weight (0-20 cm), and dry weight of tree 
seedlings and herbs as percentage of the value outside the trail

Forest
outside trails

Shallow trail Deep trail

Between tracks In tracks Between tracks In tracks

Bulk density 100 100 105 113 112

Non-capillary pore volume 100 98 67 55 60

Root dry weight 100 96 94 39 52

Tree seedling dry weight 100 150 3 23 5

Herb dry weight 100 343 267 115 204

Source: Zwetsloot (1982).

5.2.6 Observations regarding the impact of the CMS on the forest structure
Based on the findings of the studies of 1977 – 1983 (in Kabo and Mapane, see above) and 
2000-2001 (in Kabo, see De Dijn 2001a and above) into the forest structure, we observe 
the following:

•	 An important structural aspect of the forest is the gap, an “opening” in the 
canopy that allows direct sunlight to penetrate into the understorey. Gaps are 
seen as a result of a disturbance event, such as a tree bole or branch snapping, 
or an entire tree falling or being felled (Hartshorn 1990; Van der Meer et al. 
1994). These events create openings in the canopy, resulting in changes in light 
distribution. Ecologically natural tree fall due to strong winds and tree felling 
are comparable, except that the stems are extracted after felling, which creates 
extra damage to the vegetation and soil. In any case, this is the starting point for 
natural forest regeneration and associated changes in forest structure. As gaps 
age and progressively disappear, gradual changes take place in the density of the 
understorey vegetation, in tree growth and, depending on the size of the gap, in 
forest composition (see e.g. Van der Meer & Bongers 1996). These slow changes, 
leading to the repair of the forest canopy, are initiated by the sudden change in 
forest structure and light regime at the time of new gap formation.

•	 Logging will cause a minimal change in diameter distribution, as only a few 
large diameter trees per hectare will be harvested and some smaller trees will be 
destroyed (see also Section 4.3).

•	 Felling reduces basal area and standing volume per hectare only slightly, depending 
on the number of trees and volume felled and/or damaged (see also Section 4.3).

•	 Extraction of logs results in soil compaction in the skid trails, which has a negative 
impact on regeneration and thus may indirectly affect the future forest structure. 

•	 Logging followed by refinement can be considered as a shock effect on the forest 
structure. This combination severely disturbs the relatively stable conditions 
(long lasting conditions in a constant biotope) of the forest, for

 ∞ Dying and breaking of branches cause changes in the vertical structure of the 
forest and an increase of dead wood on the forest floor (see also Chapter 6).

 ∞ Collapsing stems create gaps and cause even more dead wood on the floor 
(see also Chapter 6). 
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 ∞ Basal area and standing volume initially are considerably decreased, 
but (in Akintosoela1) increase rapidly again as the growth of remaining 
(commercial) trees continues and is stimulated. 

 ∞ Dying of leaves causes a change in canopy cover and foliage distribution, 
resulting in changes in light climate, humidity and temperature (the latter 
two not having been studied).

•	 The cutting of mature lianas in early stages of forest management seems to lead 
to the observed long-term (20+ years) reduction in liana abundance. A possible 
explanation is that the canopy openings created during refinement are generally 
too small to allow light-demanding liana regeneration to compete effectively 
with trees and palms. If so, it would mean that one can expect repeated CMS 
treatments to reduce the abundance of lianas. This would be in line with the 
silvicultural targets of the CMS, and would imply that the forest will become 
structurally different from untouched forest, at least as regards the density of lianas.

•	 The impact of the CMS on the overall forest structure lasts for at least two 
decades, as can be observed in the MAIN experiment: 20 years after treatments, 
which means disturbance of forest due to selective logging and refinement 
(at low intensities, including liana cutting), the forest still is structurally more 
heterogeneous but encompasses patches that are structurally similar to 
undisturbed forest. As time goes by, one would expect the impacted forest to 
recover and become structurally more similar to untouched forest, that is, if it is 
left undisturbed after initial logging and refinement. The latter, however, is not 
what is envisaged under the CMS, and one can expect that repeated logging 
and silvicultural treatments will stop the process whereby the impacted forest 
becomes structurally more similar to untouched forest. It remains uncertain 
whether the strict application of the CMS will succeed in creating a mature forest 
which is dominated by commercial tree species, but is otherwise, e.g. structurally, 
similar to untouched forest.

A note of caution regarding the last two points must be added: these generalizations are 
based on the investigations in the experimental plots at Mapane and Kabo, which are 
the first small and medium-scale CMS try-outs (see Chapters 2, 3 and 4). Furthermore, the 
plots studied in Kabo had been treated rather mildly (in terms of logging and silvicultural 
treatment intensity; see Jonkers 1987, De Graaf 1986, and Chapter 4). Our observations 
should thus, at least partly, be regarded as hypotheses that require further testing, e.g. 
during a rigorous, large-scale application of the CMS to be monitored during decades. 

5.3 Plant diversity
Much attention was paid to the effects of interferences on the biodiversity and species 
conservation in tropical rain forests. Already during the conceptual phase of the CMS it 
was realised that refinement in particular might have a severe impact on plant diversity. 
Selective refinement of non-commercial tree species might eventually lead to their 
extinction. Within the framework of the CMS some aspects concerning the diversity of 
trees and other plant species were studied, first between 1978 and 1983, followed up 
with broader studies about two decades later.
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5.3.1 Trees
The mesophytic tropical lowland rain forest harbours many tree species and generally 
no species predominate, although patches of forest exist in which certain species occur 
in high frequency. This is also the case in Suriname, where about 500 tree species have 
been identified and 100-150 species are usually found per hectare (Schulz 1960). Jonkers 
(1987) recorded about 75 species per ha for the Kabo region. By far not all these tree 
species have an economic value, but all have an ecological value. Applying the CSS it is 
attempted to diminish the number of non-commercial trees in favour of the commercial 
(timber) trees in a stand. Obviously, the group of commercial species, identified as such 
on the so-called CELOS list, is not stable over time. Due to advances in timber technology, 
reduced availability of some species and changing market conditions it increased in 
number: the 1978 CELOS-list, used by De Graaf (1986) and somewhat adapted by Jonkers 
(1987), comprised about 50 actual and potential commercial tree species, whereas the 
most recent list of the year 2000 (see CELOS 2002) comprises about 100 vernacular 
species names.

Between 1980 and 1983 floristic tree inventories 
were made in six forest stands to estimate the 
consequences of interventions according to the 
CSS. Unfortunately, however, with an exception for 
the MAIN experiment (see below), no inventories 
were made within one year before and after a 
treatment in the same forest stand. Hence, these 
inventories allow no conclusion about eventual 
real disappearances of species due to treatments. 
Table 5.3 presents the floristic composition at 
family level and the number of species per family, 
demonstrating the impressive species richness 
of the Suriname tropical forest. The dominant 
families in Phytomass Forest and Procter’s Forest 
(i.e. the reference forests) are Burseraceae, 
Dichapetalaceae, Euphorbiaceae, Lecythidaceae, 
Leguminosae, Sapotaceae and Violaceae. 

Differences between the two forest stands in the 
Kabo region (Phytomass Forest and MAIN 21) are 
probably due to soil conditions, as a light harvest 
will hardly affect the species composition of trees 
> 5 cm dbh within three years. Noteworthy is the 
large number of Apocynaceae and Vochysiaceae 
in MAIN 21. In the Mapane region the treatments 
seem to have an effect: in Akintosoela1, six years 
after refinement (see Table 5.1) the number of 
individuals of Burseraceae, Lauraceae, Meliaceae 
and Sapotaceae had increased (Table 5.3). These 

families all contain a high number of commercial species. On the other hand the 
number of species and individuals of the Moraceae (such as Cecropia and Pourouma 

Photo 5.11 Lightly exploited forest, Procter’s Forest 
Mapane, 1983. (Photo A.L.C. Schmidt)
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spp.), Rubiaceae, Sapindaceae, Solanaceae (Solanum spp.) and Violaceae had increased 
too, indicating some secondary succession as a result of refinement. The increase of 
Inga spp. (Leguminosae) emphasizes this development. However, it is not fully sure that 
these differences are solely due to refinement; local variability in floristic composition 
may have played a role too. Dekker & De Graaf (2003) found 20 years after harvest and 
19 years after refinement in the MAIN experiment a similar development: regeneration 
of both pioneer and climax species is stimulated by treatments but the ratio of climax 
to pioneer species seems to be acceptable in the low impact interferences as applied in 
the CMS (refinement). In Weyerhäuser the situation is different. The original forest was 
largely destroyed. Trees > 27 cm dbh were removed and the crowns of the felled trees 
were left on site. Thirteen years after the exploitation the resulting secondary forest was 
still poor in commercial trees and the vegetation was heavily infested with lianas.

Table 5.3. Floristic composition of trees > 5 cm dbh, of six differently treated (see Table 5.1) forest stands. Data are given 
as number of species (sp.) and number of individuals (ind.). Note different sizes of inventory areas and different units.

Region Kabo Mapane

Forest stand Phy Fo MAIN211 Pro Fo Ma Br2 Akin2 Weye

Year of inventory 1979 1981 1980 1981 1981 1981

area 4*0.25 ha 1*0.25 ha 4*0.25 ha 1*0.25 ha 4*0.25 ha 1*0.25 ha

Data n/ha n/0.25ha n/ha n/0.25ha n/ha n/0.25ha

sp. ind. sp. ind. sp. ind. sp. ind. sp. ind. sp. ind.

Anacardiaceae 1 2 1 1 1 6 1 4 1 6 1 22

Annonaceae 3 24 1 1 3 38 3 5 4 28 1 3

Apocynaceae 6 32 3 23 3 35 1 1 4 40 2 5

Araliaceae 1 2           

Bignoniaceae 2 11 1 6 2 10 1 2 2 18 1 4

Bixaceae     1 6 1 1 1 8   

Bombacaceae 1 10 1 4 1 2   1 2   

Boraginaceae 3 6 1 2 2 26 1 11 2 45 1 22

Burseraceae 3 35 3 15 9 140 5 41 7 154 4 8

Caricaceae   1 1     1 5 1 1

Caryocaraceae     1 1       

Celastraceae 1 6 1 2 1 1 1 1   1 4

Combretaceae   1 1 1 1   1 1   

Dichapetalaceae 1 75 1 12 1 4   1 4   

Ebenaceae     2 12   2 30 1 2

Elaeocarpaceae 1 4   1 7   1 9   

Euphorbiaceae 5 47 2 8 3 37 3 6 5 28 6 17

Flacourtiaceae 2 10 1 6 5 10 1 1 3 11 2 11

Guttiferae 2 3   2 11   4 19   

Humiriaceae 1 3       1 1 2 1
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Region Kabo Mapane

Forest stand Phy Fo MAIN211 Pro Fo Ma Br2 Akin2 Weye

Year of inventory 1979 1981 1980 1981 1981 1981

area 4*0.25 ha 1*0.25 ha 4*0.25 ha 1*0.25 ha 4*0.25 ha 1*0.25 ha

Data n/ha n/0.25ha n/ha n/0.25ha n/ha n/0.25ha

sp. ind. sp. ind. sp. ind. sp. ind. sp. ind. sp. ind.

Icacinaceae 3 45 2 22 2 16 1 3 2 12 1 4

Lauraceae 7 22 2 3 7 26 3 6 7 38 4 7

Lecythidaceae 7 91 6 22 6 150 4 12 6 72 6 31

Leguminosae3 18 88 9 23 16 82 8 72 12 275 8 75

Linaceae     1 1       

Loganiaceae 1 2 1 1 1 6   1 3   

Melastomataceae 2 5 1 1 2 4   2 12 1 4

Meliaceae 2 30 1 4 4 102 4 31 6 138 2 4

Monimiaceae 3 7   1 1 1 3 1 1   

Moraceae 4 4 15 1 2 4 23 1 5 7 125 5 119

Myristicaceae 2 19 2 6 2 45 2 5 2 28 3 10

Myrtaceae 3 6   2 45   2 28 1 1

Nyctaginaceae     1 18   2 22 1 1

Olacaceae   1 4     1 3 1 1

Polygonaceae 1 2           

Rosaceae 5 32 2 13 3 28   5 10   

Rubiaceae 2 3 2 2 2 4 1 1 4 12   

Sapindaceae 1 6 2 3     3 20 1 1

Sapotaceae 8 48 6 9 3 29   6 37 1 2

Simaroubaceae 1 1 1 1 1 1   1 1   

Solanaceae       1 1 1 41   

Sterculiaceae 1 8 1 3 1 7 1 12 1 13 1 12

Tiliaceae 1 1 1 1 1 2   2 11 1 2

Ulmaceae 2 4   1 2   1 5 1 1

Violaceae 1 12 3 9 2 68 1 19 2 96 2 9

Vochysiaceae 3 26 2 41 1 4 1 1 2 5 1 1

non det. n.a. 2       n.a. 3   

TOTAL 111 745 64 252 103 1011 47 244 120 1420 64 385

1: Inventory after harvest but before refinement. 2: Large commercial trees killed during refinement. 3: Inga spp.: 
13, 6, 41, 57, 230 and 47 individuals, respectively. 4: Pouruma and Cecropia spp combined.: 8, 0, 7, 4, 99 and 103 
individuals, respectively.

Table 5.3. (continued)
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5.3.2 Spatial and temporal variation in tree species composition
Maintaining a high level of biodiversity is important if one wants to manage rain forests 
for sustained timber production (see Chapter 3). Hence, spatial variation and temporal 
changes in biodiversity after logging and silvicultural treatment were studied in the 
MAIN experiment. A total of 259 tree species were recorded before the silvicultural 
treatments were conducted (Jonkers et al. 2005). Many of those occurred in frequencies 
of less than one individual per ha, and one may therefore expect that after a few decades, 
some species may have disappeared. Indeed, after 18 years four species were no longer 
present in the plots that had been logged but had not received silvicultural treatment 
(nine ha). As one might also expect, species losses in the silviculturally treated plots 
were higher: both refinements lost 15 species in 9 ha. But these vanished species were 
replaced by larger numbers of new tree species; 19 to 24 per 9 ha. Apparently, both 
logging and refinement led to a net increase in the number of tree species within this 
18-year period, and not to a reduction as one might have expected.

Before refinement, spatial variation in species composition within the MAIN experiment 
was rather low for a tropical rain forest, but there was nevertheless a clear north-south 
gradient (Jonkers 1987). Correspondence analyses, reflecting the situation before, 
immediately after and 18 years after silvicultural treatment, also showed clear north-
south gradients but no evidence of a pronounced impact of logging intensity or 
refinement (Jonkers et al. 2005).

The impact of silvicultural treatment on species composition was nevertheless 
substantial. This is illustrated in Table 5.4 which shows temporal changes in stocking for 
a number of common species. The species on the 1978 commercial species list obviously 
benefited from silvicultural treatment and also from logging, with Dicorynia guianensis 
as a notable exception. Dicorynia guianensis densities dropped slightly throughout the 
experiment and the reason for this decline remains unclear. 

Table 5.4. Impact of silvicultural treatment on densities of common species and species categories.

Species Number of trees > 15 cm dbh per hectare

No refinement Refinement SR18 Refinement SR14

1981-
1982

1982-
1983

1999-
2000

1981-
1982

1982-
1983

1999-
2000

1981-
1982

1982-
1983

1999-
2000

Commercial species (1978 list)

Qualea rosea 19.6 18.7 23.1 20.4 19.3 31.8 20.7 20.2 35.3

Dicorynia guianensis 21.7 20.9 19.6 25.6 24.1 22.2 20.8 20.1 18.7

Virola michelli 6.3 6.0 7.4 7.3 6.9 7.9 8.0 7.0 9.4

Jacaranda copaia 3.9 3.4 4.9 4.1 3.6 8.1 4.4 4.1 8.4

Tetragastris altissima 6.2 6.0 7.2 8.0 7.7 9.2 7.1 7.1 8.4

Manilkara bidentata 11.3 11.2 11.0 8.8 8.4 9.0 8.0 7.4 7.2

Others 50.0 47.6 55.3 51.5 49.0 53.7 54.9 50.4 54.2

Subtotal 119.0 113.8 128.5 125.7 119.0 141.9 123.9 117.3 141.6
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Species Number of trees > 15 cm dbh per hectare

No refinement Refinement SR18 Refinement SR14

1981-
1982

1982-
1983

1999-
2000

1981-
1982

1982-
1983

1999-
2000

1981-
1982

1982-
1983

1999-
2000

Species, added to the CELOS commercial species list in 2000

Lecythis corrugata 12.1 12.1 12.7 10.9 10.2 14.4 12.9 8.4 13.9

Protium polybotryum 2.3 2.3 2.4 1.7 1.7 1.6 4.3 3.7 4.7

Couepia caryophylloides 6.0 6.0 6.1 4.3 3.4 4.9 6.3 3.8 5.7

Others 41.8 41.8 40.0 43.1 37.8 39.2 44.9 33.8 36.6

Subtotal 62.2 62.2 61.2 60.0 53.1 60.1 68.4 49.7 60.9

Secondary species

Inga spp. 7.4 7.0 12.8 8.1 7.1 28.4 8.1 4.6 39.3

Pourouma spp. 9.5 8.3 13.8 2.8 2.3 9.0 7.5 3.5 22.0

Palicourea guianensis 1.0 1.0 14.0 2.0 2.0 23.0 1.7 1.7 15.3

Cecropia sciadophylla 1.7 1.7 2.7 3.5 1.5 2.5 1.0 1.0 11.0

Cecropia peltata 2.0 2.0 4.0 1.0 1.0 1.0 7.5 4.0 8.5

Others 9.7 9.5 14.3 7.8 7.3 12.5 9.3 8.4 13.0

Subtotal 31.3 29.5 61.6 25.2 21.2 76.4 35.1 23.2 109.1

Non-commercial primary species

Dendrobangia boliviana 20.9 20.8 17.3 22.0 18.7 16.4 18.3 11.4 9.3

Sclerolobium melinonii 6.0 6.0 6.8 7.7 3.0 3.5 6.6 3.0 7.1

Mabea piriri 1.5 1.5 2.5 3.0 3.0 5.0 2.0 2.0 7.0

Bixa orellana 4.1 3.6 3.9 2.7 2.3 4.8 4.4 3.4 6.0

Chaetocarpus schomburgkianus 7.7 7.6 5.7 8.9 6.9 5.6 8.0 5.3 5.0

Swartzia benthamiana 6.1 6.1 5.4 5.7 5.0 4.8 5.8 3.8 4.0

Others 58.6 58.2 58.7 58.2 55.2 64.3 63.9 53.9 55.5

Subtotal 104.9 103.8 100.3 108.2 94.1 104.0 109.0 82.9 93.9

All species 319.4 311.3 352.6 320.1 288.4 383.2 338.4 274.2 406.5

Source: Jonkers et al. (2005)

During refinement most species not included in the 1978-CELOS-list of commercial 
species were reduced in numbers of trees, as one might expect. Such reductions were 
quite substantial for canopy species such as Sclerolobium melinonii, but modest for most 
other species. Species which are characteristically small in stature, such as Palicourea 
guianensis and Mabea piriri, were not at all affected during the refinements. In the years 
after refinement, most non-commercial species increased substantially in numbers 
within the silviculturally treated plots, often to more than 90 % of the pre-refinement 
density, while species densities generally remained fairly stable in the plots where no 
refinement had been applied. The densities of secondary species, however, increased 
sharply in response to both logging and silvicultural treatment and especially in plots 
where the highest harvest and refinement intensities had been combined.

Table 5.4. (continued)
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A different approach to study the effects of treatments on species composition was used 
by Ter Steege et al. (2003). They compared the results of three different tree inventories in 
1954, 1981 and 1997 in the same forest area in Mapane. Comparison was made between 
15 treated and untreated plots. Treatments consisted of highly selective logging (1960s, 
again 1980s) in combination with (in the 1980s) no poison-girdling, uniform poison-
girdling (to a basal area of 12.5 m2.ha-1) or selective poison-girdling. 

The repeated inventories were carried out along 11 lines that were recovered in block 
840 at Mapane. In total 6130 trees of 182 species were scored. In 1954, the ten most 
abundant tree taxa in the forest comprised 39 % of all trees > 25 cm dbh. The general 
composition in 1981, after some rounds of selective cuttings in the years in between, 
differed only little from the one in 1954. The ten most abundant species together 
comprised 50 % of all trees > 25 cm dbh. Overall composition in 1997 again was almost 
similar to the previous censuses, except that now Cecropia obtusa and C. sciadophylla 
were amongst the ten most abundant species, while Inga moved from position eight 
(1954) to position four (1981) and then to position two (1997)! Two Pourouma spp. also 
increased substantially and ranked 11 and 15 in 1997. 

Pioneer species, such as Cecropia and Pourouma spp., not only increased in numbers 
but also in the frequency with which they occurred in the plots. This resulted from new 
establishment from the seed bank (cf. Holthuijzen & Boerboom 1982) as well as from 
input of seeds from outside. Overall density of large trees was not significantly different 
between treatments due to high variation in the census data. Density of smaller trees 
increased significantly from 1981 to 1997, as a result of changes in the light conditions 
in the forest following the logging and poison-girdling activities. In terms of diversity 
slight but significant differences over time were found. In 1954 Fisher’s α (average of 
the lines in the inventory block) was 33.7. In 1981 the average for 5 one-ha plots was 
27.3 for non-treated plots and 25.7 for the treated plots. In 1997 these figures were 28.1, 
respectively 20.3 (Ter Steege et al. 2003). There were no differences in diversity between 
the treatments in 1981, but they differed significantly in 1997. 

Ter Steege et al. (2003) also found that a total of 19 species among the large trees and 18 
species among the small trees disappeared. In Mapane, among the lost species of large 
trees, only two were commercial species (Virola surinamensis, Vochysia guianensis). For 
all 15 plots an average of twelve species of large trees disappeared per plot, whereas 
on average eight newly appeared, resulting in a net loss of four. Of the smaller trees an 
average of eight species were lost, but 12 species newly appeared, thus there was a net 
gain of four species. 

5.3.3 Palms 
Palms are of interest to the silviculturist, among others because they actively compete 
with tree species for light, above- and below ground space, water and nutrients. Palms 
are abundant in many Neotropical rainforests. For instance, in the MAIN experiment 
at Kabo, more than 750 individuals of palms of at least 1.5 m in height (of the highest 
leaf ) were counted per hectare (Jonkers 1987). Most of them belonged to boegroemaka 
(Astrocaryum sciophilum), which was almost confined to the northern part of the 
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experimental area, and paramaka (Astrocaryum paramacca), which was found mainly in 
the southern part. Both are understorey species which grow very slowly in the shade. 
The configuration of the leaves makes both palms very effective in intercepting falling 
litter, and they are likely to derive most nutrients from decaying debris accumulated at 
the crown base and around their stem foot (De Granville 1977).

Boegroemaka has large leaves and a short stem, is often gregarious and tends to form 
a dense canopy at 5 - 12 m height. In Phytomass Forest, the dry weight of its leaves 
was estimated at 8 t.ha-1; that amounts to about half the total leaf phytomass there 
(see Chapter 6). Where the species was present in the MAIN experiment, the number 
of mature boegroemaka individuals often exceeded 1000 per hectare. The boundary 
of the boegroemaka population was remarkably sharp, a phenomenon which was 
also observed in French Guiana (Charles-Dominique et al. 2003). Evidence reported by 
Jonkers (1987) indicates that boegroemaka effectively suppresses the regeneration of 
trees, other palms and lianas, not only because little light penetrates through the palm 
canopy, but also because the dense boegroemaka crowns intercept falling fruits. Jonkers 
(1987) therefore suggested that reducing boegroemaka densities should be considered 
part of the CSS, but the evidence presented in Chapter 4 does not indicate the need for 
such an intervention.

Paramaka is a stemless palm with large leaves which may reach heights of about 3 m. 
Although there were up to 435 mature individuals per one-hectare plot in the MAIN 
experiment, this palm seldom dominated the understorey and seems less of a problem 
than boegroemaka (Jonkers 1987). Still, it may suppress regeneration of tree species 
locally. Paramaka was notably scarce in forest where boegroemaka was present. Paramaka 
is the dominant palm species in the Mapane region, but palms are considerably less 
frequent there than in Kabo.
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Figure 5.6.  Palm densities in nine plots of the MAIN experiment. Treatments  applied: plots 19, 28 and 34: low 
logging intensity, no refinement; plots 15, 27 and 36: medium logging intensity, light refinement; plots 16, 24 and 
39: high logging intensity, heavy refinement.  Adapted from Jonkers (1987) and Dekker & De Graaf (2003).
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In 2000, palms were enumerated once again in 
part of the MAIN experiment (Dekker & De Graaf 
2003). Only individuals exceeding 3 m in height 
were tallied, which makes a direct comparison 
with the older data difficult. However, there was 
an obvious correlation between palm densities 
recorded in 1982 and 2000 and there was no clear 
impact of the treatments applied (see Figure 5.6).

5.3.4 Lianas
Lianas are a characteristic component of the 
tropical rain forest. To reduce felling damage and 
competition after felling and refinement, cutting 
of thick lianas is included in the CSS prescription. 
In 2000, 22 years after logging and 19 years after 
refinement, Dekker & De Graaf (2003) assessed 
liana density in the layer between 3 and 10 m 
height in the MAIN experiment. No unambiguous 
impact of treatment was found, possibly due to 
an interaction with the presence of palms. De 
Dijn (2001a, b; see also Section 5.2.4), however, 
detected significant differences between logged 
plots and logged and refined plots. The former 
had significantly more liana stems than the latter. 
Lower numbers of lianas in the refined forest may 
represent a persistent effect of liana cutting as 
part of the CMS treatment. 

5.3.5 Observations regarding the impact of the CMS on the floristic 
composition

A high diversity in plant species is inherent to tropical rain forest. To preserve such a high 
diversity, not only in conservation areas but also in production forests under the CMS, 
is necessary, because many of the relations and cycles in CMS-forests should continue 
to function to guarantee a sustainable production and permanent forest cover. Floristic 
composition is important here, not only because young commercial trees compose the 
future production, but also because tree species that have no commercial value at the 
moment may be marketable in the future, and because plant functions in many cycles 
and interactions are not yet completely known.

The CMS comprises two treatments, selective logging and poison-girdling. Both can 
change the species composition. During logging a small number of trees per hectare are 
felled and extracted, killing and damaging some other trees and plants in the process. 
During poison-girdling lianas are cut (not poisoned) and the non-commercial trees 
above a certain diameter are killed by poison-girdling. The number of trees killed during 
this action is much larger than during logging. The cutting of lianas may have a negative 
effect on the number of liana species.

Photo 5.12. A giant liana (Bauhinia sp.) named “sekrepatoe 
trappoe”(turtle stairs) in Suriname. (Photo Ivan Torres)
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Selective logging in Kabo did not have a clear impact on tree diversity at family level 
(Table 5.3). Ter Steege et al. (2003) found comparable results for Mapane. Considering 
that the intervention implies that only a small number of large trees at the end of their 
life cycle are killed and removed and some smaller ones are damaged and killed, this 
does not come as a surprise. Apparently, the species composition remained largely 
determined by factors other than logging and an impact of the intervention on diversity 
at family level was not apparent.
 
On the other hand, selective logging and heavy refinement in Mapane (Table 5.3, 
compare Procter’s Forest with Mapanebrug and specially Akintosoela1), resulted 
in an increase in the density of Leguminosae (mainly Inga spp.), Moraceae (mainly 
Cecropia spp. and Pourouma spp.) and Solanaceae seven years after treatment. The 
genera mentioned comprise pioneer species. Noteworthy is the decrease in density of 
Lecythidaceae, with mainly non-commercial species. The refinement intervention in 
Akintosoela1 was heavier than the ones in the MAIN experiment, where Jonkers et al. 
(2005), using correspondence analyses to compare the situation before, immediately 
after and 18 years after poison-girdling, found no evidence of a pronounced impact of 
logging intensity or refinement. Further analyses showed, however, that the species on 
the 1978-list of commercial species obviously benefited from silvicultural treatment and 
also from logging. Ter Steege et al. (2003), for the Mapane area, reported an increase in 
pioneer species due to refinement, about 15 years after treatment, comparable to the 
shift in species composition in Akintosoela1.

Photo 5.13. Stereophoto of a forest in Mapane 7 years after the second refinement. (Photo N.R. De Graaf)
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Both Jonkers et al. (2005) and Ter Steege et al. (2003) found a small loss of species and a 
small gain of species due to refinement, both mainly among the rare species. This may 
result in a net gain.

One may therefore conclude that the refinements ultimately led to a moderate shift 
in species composition, that is, to slightly more commercial trees, to slightly less non-
commercial primary trees and to a proliferation of secondary species. Moreover, in our 
experiment poison-girdling is a more severe intervention than selective logging, and it 
provides better possibilities for pioneer species to invade the forest than under natural 
circumstances. Hence this intervention should be planned with utmost care. It should be 
as heavy as needed, just enough to stimulate the growth of the remaining commercial 
trees, and as light as possible, to minimize the stimulation of pioneer species to invade. 
One can envisage here a variable treatment in patches, more heavy where commercial 
trees of the right dimension are available and less heavy or even no treatment at all 
where no such commercials are present. 

5.4 Discussion and conclusions
It is quite obvious from the above that the structure and the species composition of the 
tropical rainforest will change due to treatments involved in the CMS. It is also evident 
that not all aspects have been studied and that not all the studied aspects have been 
studied as thoroughly as they should have been. Moreover, it should be noted that 
adequate baseline data were not always available for Mapane as well as for Kabo. Zero-
treatment control plots were available for Kabo only, and to a limited extent. Choices 
which had to be made regarding funding and personnel played a role here. Furthermore, 
determining the impact of human activities on biodiversity in tropical forests is a very 
complex task due to the interaction of numerous factors, including micro- and macro-
scale variation in topography and associated variables, and spatial and temporal variation 
in the intensity of the activities.

Most data so far collected about the impact of CMS interferences on structure and 
species composition/biodiversity are related to one single harvest followed by one 
refinement. It looks as if one (light) harvest plus one (light) refinement do not have a 
severe negative effect on structure and species diversity. However what will happen 
after a second refinement and eventually a second harvest? In Chapter 4 it is shown that 
timber volume growth (commercial species) in forest under the CMS may be enough 
for a second harvest 20 - 25 years after the first one, even if the total (i.e. commercial 
and non-commercial) timber volume does not yet reach the former level. Will the results 
found so far and assumptions made still stand after that second harvest? 

Two harvests in relatively rich forest in Mapane have not led to large changes in species 
composition and tree diversity (Ter Steege et al. 2003). In logged forests species richness 
and diversity was higher than in non-logged forests, but the changes were small, if the 
natural variation in the forest is taken into account. Too heavy or further treatment may 
increase the abundance of pioneer species, such as Cecropia spp. and Pourouma spp., as 
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was observed in Mapane. Rare tree species and lianas may become extinct as a result of 
refinements when too often these species are eliminated. It is clear that forest changes 
are slow.

A light harvest followed by a light refinement increases patchiness. However, a variation in 
phases in space (size and distribution) and time (age) should be guaranteed to maintain 
biodiversity (Scherzinger 1999). Sufficient vertical and horizontal structural variation, 
including large parts of undisturbed forest, should be present in the forest at all times. 
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